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Abstract. It is well known thar spin echo experiments can memure the diffusion coefficient D 
of classical Brownian motion for which (Ax(t)’)  =2D1!1. There has been considerable recent 
interest in fractal Brownian motion in which case (Ax(t)’) = ZD,ltl(’-”), where -1 c Y c I 
is the fractal exponent The spin echo damping implications of fractal diffusion an derived. 

1. Introduction 

It has long been known that the microscopic Brownian diffusion coefficient D of a ‘particle’ 
in a fluid can be measured via the amplitude of the magnetic echo signal from nuclear spins 
subject to an appropriate sequence of magnetic field pulses [I]. Here the diffusion coefficient 
is defined via the mean-square displacement of the Brownian particle x-coordinate in a time 
period t ,  i.e. 

(An(t)’) = 2Dlt l .  (2) 
The classical Brownian motion is an independent random process in which the 

correlation between past and future movements is zero. If there are longer time correlations 
among the individual movements, then the motion becomes the fractal Brownian process 
[Z]. Investigations concerning the nature of noise and fractal geometry have led to a 
generalization of (2). In fractal Brownian motion one may introduce a fractional spectral 
exponent v, and then define fractal Brownian motion as a Gaussian random process [3] with 

(Ax(t)’) ,  = 2D,ltl(’-”) (-1 < v < I ) .  (3) 
Exploring laboratory systems in which fractal Brownian motion for microscopic particles 
exists is a fruitful area [4] of materials research. The fractal diffusion also gives a better 
modelling of chemical reaction kinetics [5,6]. Fluid particles embedded in porous media, or 
fluid films absorbed on rough surfaces 171 also appear to be natural candidates for exhibiting 
fractal Brownian motion effects. 

Our purpose is to point out that field gradient spin echo experiments are a natural tool 
with which to experimentally probe for the possible existence of fractal Brownian motion. 
Here we provide the fractal generalization of the conventional spin diffusion theory which 
has proved so successful in measuring Brownian diffusion coefficients. 

In section 2 the spectral functions for velocity fluctuations are discussed: In section 3 
these spectral functions are employed to evaluate the spin echo damping due to fractal 
Brownian motion in a magnetic field gradient. In the concluding section 4, our central 
results are compared with the conventional spin diffusion approach. 
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2. Velocity spectral functions 

The spectral function S(o) for thermal Brownian velocity fluctuations is defined by 
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m 
(u,(t)u,(t')) = / dw S(w) cos[& - t ')]  . 

Equations (1) and (4) imply a mean-square Brownian motion displacement 

-CO 

The spectral function for fractal Brownian motion may be defined as 

D 
Sdw)  = -(ox)" H 

Equations ( 5 )  and (6) imply 

Equivalently 

(Ax( t ) ' ) ,  = ZD,ltl('-") (-1 < w < 1) 

where 

and where the gamma function is defined as 

The above definitions of fractal Brownian motion have been extensively discussed in the 
literature 181. 

3. Spin echo damping 

Suppose that a nuclear spin moves in an inhomogeneous magnetic field H,(x) and thereby 
has a Larmor frequency o ( x )  = yH&) which varies in space as 

o ( x )  = d o )  +gx (11) 

where g = y dH,(x)/dx is considered to be constant. As the particle undergoes random 
motion, the Larmor frequency will be randomly modulated in time according to 

o(t) = WO + g ds u x ( s )  . (12) I' 
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The random velocity then leads to a random rotation angle A8 for the spin components in 
the plane normal to the applied magnetic field; 

A8(t) = ds[o(s) - W O ]  = g 1‘ ds 1’ ds‘ u,(s’). I‘ 
The resulting random loss of phase information leads to the damping factor 

A ( t )  =‘(exp[-iAe(t)]) = e~p[-$(Ae(t)~)]  (14) 

where Gaussian averaging [9] has been invoked. Equations (4), (13) and (14) imply 

or equivalently 

Equation (17) simplifies to 

For fractal Brownian motion, (6) and (i8) yield 

Explicitly calculating the integral in (19) yields 

Finally, the central result of this work follows from (9), (15) and (20). It is the expression 

[ A , @ )  =exp - 

for the spin damping amplitude in a magnetic field gradient corresponding to the fractal 
Brownian motion equation (3). For classical Brownian motion with fractal exponent v = 0, 
the conventional spin diffusion result 

~ ~ ( t )  = exp[-)g2~t3]  (22) 

is recovered. 
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In spin echo experiments (21) is invoked to describe spin motions between RF pulses. 
Suppose a 90" pulse at time zero. If we apply (21) in the time interval 0 e t e ( rep ) ,  then 
at the 180' pulse at time (r&) 

Now we apply (21) in the time interval (rep) < t < re. The spin echo occurs at time re, 
and 

AF*%d = A&(re/2). 

Combining (23) and (24) yields 

where 

a, = (2("-~)gzD,)['/@-')l (2%) 

Some spin echo decay curves are shown in figure 1. For the U = 0 case, 

Ayho(re) = exp[- lD 12 g *r3] e (26) 

becomes the well known result for classical Brownian motion. Within present nuclear 
magnetic resonant pulse technology fractal exponents U # 0 exponents can be probed. 
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Figure 1. Exhibited are the spin echo decay amplitude for the extreme c i e s  (broken curves) 
of Y = -1  and Y = 1. The classical Brownian motion value Y = 0 (full curve) is also shown. 
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4. Conclusion 

For completeness of presentation, let us recall the usual treatment of spin diffusion based on 
classical Brownian motion. Ifg = y V H , ( r )  describes the magnetic field gradient, and if 
the (complex) nuclear magnetic moment per unit volume for components of magnetization 
normal to the field z-direction is described by 

(27) 

then (in conventional nuclear magnetic resonance literature) the magnetization is thought to 
obey [lo] 

M ( r ,  t )  = M1(r, t )  + My(?-, t )  

where T2 is the transverse magnetic relaxation time. If one looks for a solution of (27) and 
(28) of the form 

M ( r ,  t )  = A&) exp + g - r)t - - (2% TZ ‘ I  
then one finds 

This presents an alternative derivation of (22) for describing the damping due to a field 
gradient. Equations (22) and (30) correspond to classical Brownian motion exponent U = 0. 

Our central result concerns the predication for fractal Brownian motion. From (21) we 
find 

where the fractional exponent U is defined by 

(Ax( f ) ’ ) ;  = 2DVltl(’-”) (-1 < U  < 1). 

To the authors knowledge there have not been spin echo measurements performed where 
fractal exponents U # 0 have been probed, so that our central equations (25) are presently 
only theoretical. However, if fractal Brownian motion  is a reality in some materials, then 
spin echo experiments seem to be an appropriate tool for laboratory studies. 
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